04. Mar, 2021.

Nedavno sam na ovom portalu izneo ideju kako preraditi ATX napajanje u dobar ispravljač i ujedno punjač akumulatora različitih vrsta i namena. Pošto sam imao na raspolaganju kvalitetnu metalnu kutiju od jednog rashodovanog uređaja, rešio sam da je za relativno kratko vreme prilagodim za konstrukciju „pametnog“ punjača akumulatora. Osnova gradnje bilo je polovno, ali ispravno i kvalitetno kompjutersko napajanje. Tako sam ideju pretvorio u koristan uređaj za eksperimente, ali i punjenje akumulatora.

Poštujući osnovna pravila konstrukcije, posle nabavke kutije, napravio sam plan smeštaja elektronskih komponenti, gde je najveći deo prostora pripao ATX napajanju kod koga sam objedinio kablove iste boje u čvrste zajedničke spojeve zalemljene na okruglim kabal stopicama, vezujući ih po rastućem naponu na rednu keramičku stezaljku. Kod uređaja sam na napojnom kablu namerno izostavio uzemljenje, odnosno bez njegovog vezivanja za nulu, da ne bi došlo do neželjenih kratkih spojeva, jer je u ovom slučaju plavi provodnik na potencijalu od -12 V, a uzima se kao minus pol izvora, crni su na nuli, narandžasti na 3,3 V, crveni na 5 V i žuti na 12 V. Kombinovao sam potencijale od  -12 V i 3,3 V, te sam tako dobio kvalitetno napajanje akumulatora ( 15,3 V ) sa strujom koja može preći i 5 A, što zavisi od stanja napunjenosti akumulatorske baterije. Za kontrolu punjenja uradio sam elektronsku regulaciju napona i struje punjenja i pražnjenja ( određena je potpuno drugačija namena dva potenciometra sa prednje strane kutije ), na taj način što sam zadao vrednost do 14,8 V, tako da punjenje akumulatora prestaje kod zadatog napona za akumulator. Biranjem jačine struje punjenja finom regulacijom samo produžavamo, ili skraćujemo vreme punjenja. Za vizuelnu kontrolu odabrao sam digitalni V/A - metar čije spajanje je dosta jednostavno, pošto se uz instrument dobiju odgovarajući kablovi. Odabrao sam ugradnju instrumenta koji precizno registruje jačinu struje do 10 A i napon do 100 V. Za njegovo napajanje upotrebio sam poseban izvor struje sa regulatora napona LM7812. Ugradio sam dva ventilatora ( „kulera“ ), jedan za direktno hlađenje ATX napajanja i drugi za stalnu cirkulaciju zagrejanog vazduha iz kutije. Ventilatori se napajaju stabilnim izvorom napona od 12 V koji sam uzeo sa ATX-a. Posebnu brigu  posvetio sam da sve izvode na kutiji uređaja preradim za dostupne izvore tri različita napona: 3,3 V, 5 V i 12 V, a da se stabilno punjenje akumulatora do 14,8 V može ostvariti preko dve ugrađene buksne na prednjoj strani kutije ( crna - minus i crvena - plus ), strogo pazeći da plavi provodnik bude galvanski odvojen od mase, odnosno spleta crnih provodnika ATX napajanja. Pored navedenog napajanja ugradio sam mrežni transformator manje snage koji služi za napajanje složene elektronike kontrole i fine regulacije pojedinih procesnih radnji kojima se obezbeđuje potpuno kontrolisano punjenje i sigurna elektronska zaštita od kratkog spoja i pogrešnog polariteta.

Uređaj je detaljno testiran u režimu eskploatacije i maksimalnog opterećenja, pri čemu se pokazao stabilnim izvorom napajanja, ali i punjenja akumulatora. Cena ugrađenih komponenti nije velika jer je korišten raspoloživi materijal koji nije završio kao odbačeni elektronski otpad. Ispravljač može poslužiti za različite namene, a cilj gradnje bio je da se praktično pokaže kako uspešno preraditi ATX napajanje za neku drugu namenu. Ovim je dobronamerno demantovana tvrdnja nekih konstruktora da se akumulator može uspešno puniti i sa 12 V sa ATX napajanja. Za sigurno punjenje akumulatora potrebno je obezbediti napon koji je do 23,33 % viši od 12 V. Sa naponom od 12 V akumulator se ne može nikako napuniti. Poređenja radi, to bi izgledalo kao da iz bokala manje zapremine punimo vodom posudu nešto veće zapremine. Posudu ćemo napuniti do nekog nivoa, ali nikada neće biti potpuno puna!

Većina konstruktora nastoji da u svojoj radionici ima različite izvore naizmeničnog i jednosmernog napona. Različite vrednosti naizmeničnog napona možemo dobiti preko odgovarajućeg autotransformatora, ili sa galvanski odvojenog sekundara transformatora. Pošto sam na gradskom otpadu pazario jedan dobro očuvan mrežni transformator velike snage, koja prema preseku njegovog jezgra iznosi oko 500 W, izgledno je kao napajanje starog kinoprojektora, proverio sam realnu mogućnost da se deblji izvodi njegovih namotaja koriste kao sekundar, a kao primarni namotaj poslužio je izdvojeni segment tanje žice koji je nekada, kao sekundar, indukovao napon od 400 V. Dovođenjem mrežnog napona od 230 V na taj izvod dobio sam galvanski odvojen sekundar od mrežnog napona uz mogućnost različitih kombinacija napona preko grebenastog preklopnika koji je ranije služio za neke druge varijante promene naizmeničnog napona. Preklopnik, sa tri radna i početnim neutralnim ( nultim ) položajem, namenjen je za veoma jake struje, što je u startu odgovaralo zamišljenoj koncepciji uređaja.

Ova radnja me još uvek podseća na uspešno izvedenu varijantu zamene primarnog i sekundarnog namotaja kod UPS uređaja, o čemu sam detaljno pisao u mojim ranijim člancima. U ovom slučaju dobio sam različite napone sekundarnog izvoda, tako da sam odabrao 15 V, 25 V i 50 V ispravljenog naizmeničnog napona, što može poslužiti za različite eksperimente, a nekada i za brzo punjenje olovnih akumulatora, jer jačina struje prelazi 10 A za vrednost napona od 15 V. Odabrao sam Grecov spoj od 35 A, jer je pri naponu od 14,8 V maksimalna jačina struje 33,78 A. Fina filtracija podešenog jednosmernog napona izvedena je pomoću odgovarajućeg elektrolitičkog kondenzatora manjeg kapaciteta, čiji radni napon treba da bude minimalno 120% od maksimalno izabranog jednosmernog napona. Kod brzog punjenja Pb akumulatora napon punjenja ne bi smeo da prelazi 15 V, jer bi u tom slučaju došlo do ključanja elektrolita. Ako baterija ključa tokom punjenja, to je signal da je gotovo napunjena i da se ne može ostaviti u tom stanju tokom noći, jer to može dovesti do negativnih posledica po ćelije akumulatora. Sa naponom od 14,8 V bi se sa ovim punjačem akumulatorska baterija standardnog kapaciteta od 54 Ah, bez ikakvih štetnih posledica za ćelije akumulatora, napunila za 1h i 36 min. Veoma precizan proračun vremena punjenja akumulatora vršimo pomoću poznate formule: q = I*t, odakle je t = q/I = 54 Ah/33,78 A = 1,6 h = 1 h 36 min. U praksi nigde ne primenjujem brzo punjenje akumulatora, jer sam se uverio da sporo punjenje ima niz prednosti i da uglavnom produžava radni vek akumulatora. Ako struja punjenja prelazi 5 A to nije dobro ni za jedan akumulator, posebno za čelične akumulatore koji imaju posebne uslove punjenja i pražnjenja.

Na kraju, mnogi će se zapitati, koja korist i trošak oko sagrađenog uređaja? Pre svega, transformator nije završio kao otpad koji se prodaje na kilogram, već kao sklop sa različitim izborom napona i proveru ispravnosti drugih uređaja koji koriste odgovarajuće jednosmerne napone. Ono što je još vrednije, ako proverimo koliko košta bilo koji novi mrežni transformator velike snage, na ogromnom smo dobitku, jer je uloženo veoma malo novčanih sredstava, a dobilo se daleko više. Ovakav uređaj može se koristiti i kao efikasno napajanje pojačivača velike snage, pošto daje dovoljnu jačinu struje i daleko je kvalitetnije rešenje od „čoperskog“ napajanja koje nema transformator. Jedina mu je mana što ima znatno veću masu, ali svaki bolji poznavalac tehnike uglavnom prema masi određuje vrednost uređaja, bilo da je nov,  polovan, ili smo ga našli na otpadu gde bi završio kao staro gvožđe. Za mene je najveća vrednost opisanog uređaja njegova multifunkcionalna praktična namena u radionici, siguran i bezbedan rad i odgovarajuća provera teorije u praksi. Zbog toga mu je u mojoj hobi radionici određeno posebno mesto, da bude nadohvat ruke i da posluži za različite eksperimente, provere, precizna merenja i nove napredne konstrukcije.

Ovih dana, prelistavajući zanimljive  članke i iskustva iz praktične elektronike, nailazim na različita tumačenja o korišćenju kompjuterskog napajanja za punjenje akumulatora. Neka se više zasnivaju na pretpostavkama, pa čak i prevarama na koje nasedaju i oni koji malo više poznaju navedenu problematiku. Pošto sam se u svim mojim dosadašnjim člancima iz elektronike na ovom portalu, koji imaju 804.000 pregleda, bavio iskustvom i praksom, iznosim moje skromno mišljenje o tom problemu. Nekad jednostavno rešenje zadatka iz matematike za šesti razred osnovne škole dovodi do spoznaje kako zaista sa ATX napajanjem možemo napuniti akumulator. Pitam, tako đaka iz komšiluka kome, kada zaškripi pomažem u matematici, kolika je udaljenost između tačaka A(+3)  i B(-12). On kao iz topa računa: ( +3 ) – ( -12 ) = 3 + 12 = 15, a da nije ni svestan da je rešio problem.

Na konektoru ATX napajanja provodnik sa plavom bojom nalazi se na potencijalu od -12 VDC u odnosu na masu ( GND ) koja je na nuli, a provodnik  narandžaste boje na +3,3 VDC. Naslućujemo jednostavno rešenje da dobijemo 15,3 V jednosmernog napona kojim možemo napuniti automobilski akumulator većeg kapaciteta. Napon između crnog i žutog provodnika iznosi 12 V, što nikako nije dovoljno, kao što neki tvrde, da napunimo akumulator. Pre svega, treba znati da je akumulator ispražnjen ako mu je napon ispod 12,4 V, a sa 12 V sa ATX-a akumulator se ne puni.

Pošto su praktično potvrđene mogućnosti rešenja, ostaje nam samo da rešimo kako pokrenuti kompjutersko napajanje da radi. Prespajanjem zelenog (PS_ ON#) i  crnog provodnika ( COM ) pokrenućemo ovo napajanje. Drugi mogući problem je što je crni provodnik na masi, a njega uopšte nemamo u kombinaciji rešenja. Jednostavno, kod punjenja akumulatora na izvodu priključka plavi provodnik uzimamo za minus, a narandžasti za plus. Plavi provodnik nikako ne spajamo sa masom ( crnim provodnicima ), već ga izdvajamo kao minus pol izvora struje koji je aktuelan samo za akumulator koji punimo. Idući tom logikom dolazimo do niza kombinacija napona, sa strujom punjenja do 5 A, što zavisi od samog napajanja.

Ostale korisne dorade, koje predlažem kod prepravke ATX napajanja za punjenje akumulatora, su: kontrola napona i struje punjenja, što se može rešiti ugradnjom digitalnog V/A - metra, zatim izdvojen priključak za akumulator koji sa plavim provodnikom nikako ne sme biti vezan za masu, odnosno za metalno kućište sa kojim su direktno u vezi svi crni provodnici. Ostale dorade, koje se preporučuju u smislu vezivanja pina 1.  IC  tipa KA7500 preko otpornika od 10 K i potenciometra od 22 K sa masom, u praksi nikako ne potvrđuju takvu mogućnost podizanja napona. Ovakva prerađena napajanja nisu preporučljiva za uređaje kod kojih napajanje ide na masu, jer će se kratak spoj ostvariti preko provodnika za uzemljenje. Zaključimo da je ovo dosta dobro rešenje za punjenje akumulatora čiji napon punjenja mora biti veći od 12,8 V, a nešto manji od 15 V. Priložene slike pokazuju da takvo rešenje realno postoji, te da je potpuno provereno u praksi.

Otkako su uvedeni mobilni telefoni u masovnu upotrebu i svakodnevno korišćenje u životu savremenog čoveka, glavna tema, a i različita naučna i nenaučna tumačenja, je da li njihovo zračenje izaziva rak, ili neke druge psihosomatske poremećaje. Dokazana činjenica je da mobilni telefoni emituju talase, ali je reč o radiofrekventnom, odnosno nejonizirajućem zračenju koje, naučno gledano, ne može biti štetno po ljude.

To je zračenje koje je prisutno kod elektromagnetnih talasa ( EMT ) za radio i televiziju, radar i ostale RF mikrotalasne uređaje. Ovo zračenje sastoji se od pokretnih talasa u frekventnom opsegu od 3 kHz do 300 GHz. Ako pažljivo pogledamo elektromagnetni spektar zračenja, primećujemo da se ne radi o talasima koji se emituju kod rentgen aparata, ili kod pada atomske bombe, koji su drugačiji po delovanju i njihovom prodoru kroz različite materijalne sredine. Atomska, ili hidrogenska bomba pri eksploziji ispoljavaju tri vida dejstva: udarno, toplotno i radioaktivno. Radioaktivnost se ispoljava delovanjem alfa, beta i gama zraka, što kao proces traje relativno dugo i ne može se videti. Alfa ( α ) zraci su ogoljena jezgra atoma helijuma (2He na četvrtu), dok su beta ( β ) zraci veoma brzi elektroni. Opasni su gama ( γ ) zraci  koji su elektromagnetne ( talasne ) prirode i mogu izazvati poremećaj DNK, te da dovedu do pojave raka. To nije tipičan slučaj kod mobilnih telefona, što su naučnici utvrdili u svom dugogodišnjem istraživanju. Gama zraci mogu probiti i deblje olovne ploče ( do 20 cm ), a da ne govorimo o različitim građevinskim materijalima od kojih su napravljene kuće i stanovi.

Pacovi, kao zamena za ljude u različitim eksperimentima, pomogli su naučnicima da dođu do saznanja o izvesnom uticaju zračenja mobilnih telefona. Rezultati istraživanja govore da su mužjaci pacova imali malo povećanje tumora na srcu, nakon što su izloženi bliskom i dužem zračenju mobilnog telefona. Posledice na ženke nisu zapažene. Ipak, po njihovim rečima, nema razloga za preteranu brigu. Ovi pacovi su bili izloženi enormno dužem i jačem zračenju koje ne mogu iskusiti ljudi pri upotrebi mobilnog telefona, pod uslovom da im telefon nije stalno u blizini uva, ili da ga drže pod jastukom. Mobilni telefon ne zrači jedino kada je potpuno isključen. Dok je u stanju mirovanja njegovo zračenje je vro slabo. Prilikom punjenja mobilni telefon slabo zrači ako nije isključen. Ukoliko je isključen, mobilni telefon na punjenju ne zrači. Eksperimentalno  je utvrđeno da na udaljenosti od 60 cm bilo kakvo zračenje mobilnog telefona nema nikakvog uticaja na živo tkivo. Preterana upotreba mobilnog telefona ne treba da znači da je to opasno po zdravlje čoveka. Najosetljiviji delovi tela pri zračenju mobilnog telefona su glava, posebno oči i mozak koji zbog njegove složene funkcije i prisutnih bioloških struja, takođe pomalo zrači. Kao dokaz tome su telepatija, hipnoza i druge pojave za koje postoji, ili ne postoji pravo naučno objašnjenje. U nauci je poznato da, svugde gde postoji električno, deluje i magnetno polje, što je dokazao danski fizičar Hans Kristijan Ersted ( 1777 – 1851. ) svojim čuvenim ogledom sa magnetnom iglom i provodnikom struje, 1820. godine.

Zaključimo da svaki organizam nije jednako osetljiv na različita zračenja kojima smo svakodnevno izloženi, te da zavisi i od odeće koju nosimo, od pigmentacije kože, pola, uzrasta, otpornosti organizma, adaptacije na  radne i životne uslove, klimu, ali i od odbrambenih mehanizama ( stanja zdravlja ) koji nisu jednaki kod svake biloške jedinke. Ljudi se razlikuju kao u gori list i nisu ujednačeno osetljivi na štetna zračenja. Ponekad se treba opravdano zapitati, da li je štetnije zračenje televizora, mikrotalasne rerne, ili monitora računara i instaliranih predajnih antena na zgradama od samog telefona. Treba biti svestan činjenice da, gde god postoji usmereno kretanje elektrona, ili prostiranje EMT, tu se javlja zračenje, negde slabijeg, a negde jačeg intenziteta, što se može meriti preciznim instrumentima. Posebno su interesantna zračenja podzemnih voda, kao i kosmička zračenja, koja mogu uticati na zdravlje čoveka. Problem je što sva zračenja ne možemo videti, niti neposredno čulno osetiti, već samo doživljavamo njihove posledice koje mogu štetiti zdravlju i najzdravijeg čoveka.

Plavi ekran je verovatno najomraženija pojava većine korisnika Windows operativnog sistema. Uzrok je u najvećem broju slučajeva hardverska neispravnost, ali, praksa potvrđuje da nije retka pojava plavog ekrana zbog korišćenja neadekvatnih drajvera ili nekompatibilnih aplikacija. Ako je Vaš računar stariji od pet godina, prva stvar koju treba proveriti jeste njegovo napajanje. Potrebno je staviti ispravno napajanje, ili uraditi opravku starog napajanja koje će dati stabilan napon svim delovima računara.

Ako nastave da se pojavljuju isti simptomi, staro napajanje najverovatnije nije uzrok kvara, mada se ponekad dešava da neispravno napajanje lančano proizvede još neki kvar koji se najčešće dešava na RAM memorijama.

Sledeći korak jeste testiranje RAM memorije. Za ovu namenu, ako koristite Windows 7, može Vam poslužiti instalacioni DVD Windows-a 7. Pokrenite Setup sa diska, izaberite željeni jezik, a zatim, u narednom koraku izaberite opciju “Repair your computer”. Ako, ipak nemate ovaj instalicioni disk, naš predlog je da upotrebite “Memtest86″, najpouzdaniji alat za testiranje memorije. Imajte na umu da testiranje memorije traje dosta dugo i da moramo imati poprilično strpljenja. To nije jednostavna radnja, tako da je najbolje pogledati uputstvo preko Interneta kako se radi ovaj test, a pre svega mora se preuzeti navedeni program koji ima besplatnu verziju.

Ako testiranje memorije pokaže neispravnost RAM memorije, zamenite memorijski modul i problem je verovatno rešen. Ukoliko to nije slučaj, savetujemo da pogledate tekst na plavom ekranu, jer operativni sistem na tom ekranu ispisuje šifru greške, što Vam može biti od velike koristi u daljoj dijagnostici. U svakom slučaju, za ovu radnju je potrebno poznavanje engleskog jezika, ili poziv u pomoć prijatelja da prevede upozorenje.

Utvrdivši da računar nema hardversku neispravnost, prvo na šta treba obratiti pažnju jesu drajveri. Najčešće se problem javlja kod drajvera za grafičku karticu. Naš je savet je da instalirate drajver sa originalnog diska koji je isporučen prilikom kupovine kartice, ili da idete komponentu po komponentu i tako ažurirate drajvere. Za takvu radnju će trebati malo više vremena. Ukoliko su drajveri u redu, a problem je u Kernelu, možete da pokušate “System Restore”, odnosno da sistem vratite u stanje kada je računar radio bez problema. U tom slučaju možda ćete izgubiti softver koji je u međuvremenu instaliran ( a možda je baš neki njegov fajl oštetio operativni sistem ), ali svi vaši podaci koje ste u međuvremenu snimili biće sačuvani.

Moje dugogodišnje radno iskustvo sa pojavom plavog ekrana potvrđuje da se gotovo uvek radilo o drajverima, često je kao uzrok bilo napajanje, a nekoliko puta dotrajale memorijske kartice koje su stradale zbog visoke temperature. Njihova zamena polovnim nije dobar izbor, tako da je najbolje da kupimo novu RAM memoriju. Treba, ipak, imati u vidu da tehnologije brzo napreduju i da se tome moramo stalno prilagođavati, jer ulaganje u nešto što je prevaziđeno je rasipanje novca. Nekada je bolje kupiti novi računar nego vršiti nadogradnju komponenti koje su vremenski pregažene. To se posebno odnosi na matičnu ploču zbog nekompatibilnosti komponenti.

Primetio sam da kod mnogih korisnika računara postoji neizgrađena navika  da se računar redovno održava i čisti od virusa i zaostalih tragova surfovanja na Internetu. Postoji dosta besplatnih antivirusnih programa i klinera, tako da ostaje slobodan izbor za što će se neko opredeliti. Pošto nemam nameru da favorizujem bilo koji od AVP ( plaćeni, ili slobodni ) i klinera za čišćenje računara, moja preporuka je da računar moramo redovno održavati, posebno ako smo često na Internetu. Mnogi, ne znajući da ne treba, instaliraju AVP i na Windows 10. Ovaj operativni sistem ima već ugrađen AVP koji se sam ažurira i uspešno brani vaš računar od napada virusa. Takođe, nije potrebno da instaliramo po nekoliko AVP koji se pri radu “sukobljavaju”, a time usporavaju ceo operativni sistem. Pravilno i redovno održavanje hardvera i softvera računara smanjuje izdatke kućnog budžeta.

U idealnom svetu života i rada sa tehnikom, vaš PC bi trebalo da traje onoliko koliko to želite, a jedini razlog za kupovinu novog trebalo bi da budu samo aktuelne komponente, a nekad i potencijalni kvarovi. Nažalost, mi ne odlučujemo kada će se nešto od tehnike pokvariti, niti koliko će godina biti aktuelno. Podsetimo se iz prakse koji su najčešći kvarovi na računaru.

Iako matične ploče nemaju pokretne delove, one su toliko kompleksne i specifične u svojoj konstrukciji da čak i najmanji kvar može da bude katastrofalan. Bilo kakav pokušaj opravke je složena radnja koja uspeva profesionalcima i dobrim poznavaocima tipičnih kvarova na matičnoj ploči. Najčešći kvarovi su osušeni ( nabubreli ) elektroliti koji se lako menjaju, ali teži kvarovi su dotrajali spojevi sitne štampe matične ploče. Vek joj se itekako može produžiti upotrebom UPS uređaja koji obezbeđuje stabilno napajanje i zaštitu pri nestanku struje u mreži, ili pri varijacijama napona. Ukoliko računar posle isključenja ne “pamti” datum i vreme uzrok je prazna BIOS (CMOS) baterija koja se lako menja, što zavisi od konstrukcije i dostupnosti.

Diskovi dolaze u dva pakovanja, hard-disk ( HDD ) i SSD. Kompjuter ne može da funkcioniše bez jednog od njih, jer se tu nalazi operativni sistem. Ako vam disk otkaže poslušnost, odmah morate da pronađete zamenu, ali je najveći problem kako sačuvati i skinuti podatke koji se nalaze na njemu. HDD i SSD mogu da se pokvare, ali iz različitih razloga. HDD je mehanički i ima pokretljive delove. Zbog toga vremenom dolazi do fizičkih kvarova. SSD je baziran na čipovima fleš memorije, i nema pokretne delove. Međutim, fleš memorija vremenom počinje da bude nepouzdana u skladištenju podataka i podložnija je problemima usled ekstremnih temperatura.

RAM je ključan za rad kompjutera i jedan je od prvih delova koje bi trebalo nadograditi ako želite da vam kompjuter brže radi. Trenutna norma za solidnu brzinu kompjutera iznosi 8GB RAM-a. U zavisnosti od modela i brenda koji kupite, razlikuje se i njihov životni vek. U savršenim uslovima, RAM ima iznenađujuće dug životni vek. Ipak, postoje dve stvari koje u sekundi mogu da “ubiju” RAM - temperatura i promene napona napajanja.

Postoji nekoliko stvari koje morate da uzmete u obzir kada kupujete napajanje za svoj PC, ali životni vek je svakako najvažniji. Napajanja su malo gora nego RAM po pitanju životnog veka – naravno pod idealnim uslovima. Pod normalnim uslovima koriščenja, napajanje bi trebalo da traje barem pet godina, možda čak i deset ako imate sreće. Najčešći kvarovi kod napajanja su osušeni elektroliti koji se mogu lako zameniti, te prekinute veze na pločici koje se mogu osvežiti ( pojačati ) ponovnim lemljenjem slabih spojeva.

Verovatno niste puno razmišljali o ventilatoru koji održava život procesoru, grafičkoj kartici i drugim vitalnim delovima koji se u toku rada greju. Sigurno se desi da i ne primetite kada neki od ventilatora prestane sa radom. Na svu sreću, ventilator je lako i jeftino zameniti. Međutim, posebni ventilatori koji hlade procesor preko aluminijskog tela hladnjaka, ili grafičku karticu, ne mogu biti brzo zamenjeni i njihov kvar vas može skupo koštati, jer će sa sobom, usled pregrevanja, uništiti i jednu od ove dve komponente. Ventilatori su mehaničke komponente, baš kao i hard diskovi i zbog toga može da dođe do njihovog trošenja tokom vremena. Mogu se povremeno čistiti, ili da im se zameni mast, ili ubaci kapljica mašinskog ulja na osovinicu čije ležište se zbog okretanja osušilo, tako da se čuje bučan rad ventilatora. Ovu pojavu dodatno mogu da ubrzaju prašina i brojne druge čestice koje se sakupljaju na lopaticama ventilatora. Kontrola rada ventilatora na procesoru i nekim grafičkim karticama može se pratiti softverski instaliranjem odgovarajućih namenskih programa, ili podešavanjem vršne temperature u BIOS-u. Pri dostizanju zadate kritične vrednosti temperature ( 72 stepena C ) računar se sam gasi i tako spašava vitalne komponente od težih kvarova. U tom slučaju treba utvrditi uzroke pregrevanja komponenti, a potom ih što pre sanirati.

Na kraju recimo da neke vrste računara zvučnim signalima upozoravaju na različite hardverske i softverske probleme, tako da prema dužini trajanja i po broju dugih i kratkih “bip - signala” možemo lakše pronaći kvar. Šta konkretno znače pojedini zvučni signali možemo lako pronaći na Internetu, ili u uputstvu za matičnu ploču. Još jednom podvucimo da UPS spašava PC od mogućih problema i da njegova nabavka nije nikakav luksuz, bez obzira na cenu i na kasniju zamenu baterije za UPS-a koja ima svoj ograničen rok trajanja.

Svaka ozbiljnija konstrukcija i gradnja NF stereo pojačavača, pored planski pripremljenog pristupa, kvalitetne stručne opservacije i dobrog poznavanja njegovih osnovnih funkcija, traži posebnu predostrožnost pri određivanju najboljeg položaja ulaza, izlaza i ispravljačkog stepena, kao i kod uzemljivanja i pravilnog oklapanja delova uređaja. Na ulazu pojačavača osetljivost je velika, a zbog toga i pojačanje ima veliku vrednost. Primaran zadatak gradnje je kako pravilno oklopiti predviđene ulaze i sprečiti njihov negativan uticaj na izlazni stepen.

Kod NF pojačavača velike snage od ispravljača teku struje od nekoliko ampera. Provodnici kroz koje teku tako jake struje ne smeju biti povezani nekim povratnim vezama sa ostalim stepenima kola. U suprotnom možemo očekivati pojavu oscilacija, bruma, ili nestabilnost u radu pojačavača. Ove pojave se javljaju zbog malog, ali ipak, konačnog otpora provodnika kroz koje teku tako jake struje.

Uzemljivanje stereo pojačavača još je kompleksnije pitanje, jer se nipošto ne sme dozvoliti da između bilo koje dve tačke na potencijalu mase postoje dva provodna puta ( tzv. „petlja bruma“ ). Najbolje je sve uzemljiti na jednom čvorištu minus pola elektrolitičkih kondenzatora ispravljačkog stepena koji su, po pravilu, velikog kapaciteta, odnosno vrednosti od nekoliko hiljada µF. Uzemljenje za izlazne tranzistore i zvučnike se, takođe, vezuje u zajedničku tačku na ispravljaču. Vodovi za napajanje izvode se odgovarajućim provodnicima, a spajaju u jednoj tački u ispravljaču. Vodovi za napajanje predpojačavača mogu se međusobno vezati, ali što kraćim vezama, pa se jedan od pretpojačavača poveže sa ispravljačem.

Provodnici izlaznog stepena treba da budu što kraći, a dobro bi bilo da se vode zajedno provodnici koji idu na emiter, odnosno kolektor ( na taj način se smanjuje magnento polje ). Posebno treba naglasiti da se mase koaksijalnih kablova vezuju samo na jednom kraju i da su svi vodovi simetrično postavljeni. Ispravljački stepen treba da je ožičen debelim provodnicima i na taj način ćemo sprečiti pojavu ometajućih polja i samooscilacija koje se teško otklanjaju. Izlazna otpornost ispravljača trebala bi da bude što manja, što zavisi od vrste i klase. U suprotnom stabilizacija će biti loša, a napon će varirati u istom ritmu kao i ulazni signal što dovodi do nestabilnog rada pojačavača. Poželjno je, takođe, pravilno oklopiti mrežni transformator, ispravljač i predpojačavač sa priključcima. Ovo je najbolje izvesti čeličnim limom, s obzirom na njegove magnetne osobine.

Posebna dilema među konstruktorima je, da li uzemljiti, ili ne uzemljiti pojačavač. Neki su za, a neki protiv takve radnje. Ako bolje pogledamo, sva kvalitetnija fabrička pojačala su uzemljena, posebno ako imaju metalnu kutiju. Neki pojačavači bruje ukoliko nisu uzemljeni, posebno za električnu gitaru, ako nisu uzemljerni svi njeni metalni delovi. Svaki uređaj je priča za sebe, nekim prosto ne treba uzemljenje! Ako to radimo, onda treba proveriti da li imamo ispravnu mrežnu instalaciju kod koje napon između nule i uzemljenja ne bi trebalo da prelazi 10 V, a najbolje je da bude 0 V. Napon između faznog voda i uzemljenja trebao bi da bude oko 230 V i, naravno, između faze i nule 230 V. Ukoliko pojačalo koristi mikrofon, a nije uzemljeno, može se desiti proboj napona na masu pojačala, a time i na telo mikrofona, što krije opasnost od udara struje. Ako su metalna kutija i masa pojačala uzemljeni, neće doći do takve neprijatne i po život opasne pojave. Uzemljenje pojačala podrazumeva vezivanje kutije i minus pola čvora izvora napajanja na provodnik koji služi kao uzemljenje. Kod nekih pojačavača, kao što je ovo sa priloženih slika, nikako ne smemo minus pol napajanja vezati na masu, već samo minus pol odvojenog izvora napajanja predpojačala koji je provodno, preko širma, vezan za telo mikrofona i za kutiju. Interesantno je iskustvo da se kod ovog pojačavača minus pol izvora napajanja i minus pol napajanja predpojačavača moraju vezati preko blok-kondenzatora čija se vrednost određuje eksperimentalno. Odabraćemo kapacitet blok-kondenzatora koji eliminiše i najmanji šum na izlazu. O ovom interesantnom problemu, koji može stvoriti glavobolju svakom konstruktoru, pisao sam nedavno na ovom portalu ( „Pojačalo sa izlazom bez spoja sa masom“, objavljeno, 18.01.2020. ), upravo prilikom gradnje uređaja koji je prikazan na slikama.

Na kraju, moj savet je da se ne treba nikako upuštati u konstrukciju i gradnju ako nismo dobri poznavaoci principa rada pojačavača i opisanih problema na koje možemo naići, te ako nemamo izgrađenu naviku preciznosti, pravilnog čitanja šema po kojima radimo i jaku volju da planiranu konstrukciju dovedemo do kraja. Pre početka rada treba odabrati odgovarajuću kutiju, odrediti raspored podsklopova, nabaviti sve delove i obezbediti potreban pribor i alat za rad. Mnogi se opravdano pitaju, da li je uopšte isplativija gradnja, ili kupovina fabričkog uređaja. Moje dugogodišnje konstruktorsko iskustvo kaže da današnji fabrički uređaji služe veoma kratko, a uređaji koje sam temeljito gradio besprekorno me služe  godinama. Ako gledamo na cenu, daleko skuplje je ono što sami pravimo, problem je odgovarajuća šema, izrada štampanih pločica, nabavka komponenti, adekvatna kutija, ali zadovoljstvo nakon uspešne gradnje ima nemerljivu cenu i potvrdu znanja u praksi.

Literatura:
1. „Audio amplifier systems“ - Philips, naučna publikacija iz 1972. godine,
2.  M. Kričković: „Predostrožnosti pri gradnji NF pojačala“.

Nedavno sam pisao na ovom portalu o korišćenju LED štapa koji se pri nestanku struje u mreži napaja sa 12 V. Pošto takav izvor svetlosti može poslužiti kao prigušeno noćno svetlo kada je potpuni mrak, postavlja se praktično pitanje, kako smanjiti jačinu svetlosti do željene mere. Kupovina regulatora napona ( „dimera“ ) za LED svetlo nešto je veći izdatak, tako da sam došao do jednostavne šeme regulatora jednosmernog napona pomoću LM317, jednog otpornika, potenciometra i dva elektrolita. Njihovom kombinacijom dobijen je sklop za finu regulaciju napona.

Regulator je najbolje smestiti u neku plastičnu kutiju u koju dovodimo jednosmerni napon maksimalne vrednosti do 28 V. Plus pol izlaza ispravljača, ili akumulatora, spaja se na pinu 3. dok se minus pol izvora vezuje na jedan kraj potenciometra od 5 K, a srednji izvod i drugi kraj potenciometra spajaju se na pinu 1. Od te nožice spaja se otpornik od 240 oma sa pinom 2. koji ujedno služi kao izvor promenljivog napona od 0 V – 28 V. Sa regulatorom napona LM317 možemo dobiti struju maksimalne vrednosti do 1,5 A, što je sasvim dovoljno za napajanje LED štapa.

Ukoliko koristimo struju preko 1 A preporučuje se montaža IC LM317 na odgovarajući aluminijski hladnjak koji ne sme da direktno naleže na uzemljeno metalno kućište, jer je telo IC ( vidi sliku ) u spoju sa pinom 2. na kome se nalazi plus pol izlaza regulatora napona. Vrednosti otpornika ( R2 ) i potenciometra ( R1 ) nisu kritične, tako da se može koristiti potenciometar i od 10 K, a otpornik nešto veće vrednosti, što spada u domen eksperimentalnog rada pri podešavanju struje za LED svetlo koje imamo pri raspolaganju. Regulator je namenjen za svetlo maksimalne potrošnje do 1,5 A ( snage potrošača do 18 W ),  napona 12 V, a potenciometrom se podešava intenzitet svetlosti do željene vrednosti – jačine.

 Životna poruka Nikole Tesle:
„Najveće čovekovo  zadovoljstvo je posvetiti se nečemu što mu ni u snu ne da mira!“

( Članak posvećen Teslinom i mom rođendanu, 10. juli )

Donedavno smo rezervno napajanje svetiljki manje snage, u ambijentu bez gradske mreže, koristili upotrebom konvertora napona ( 12 V = /230 V ≈  ), što se pojavom LED svetla ( 12 V, 24 V = ) pokazalo suvišnim i neracionalnim rešenjem. Ovo se ne odnosi na korišćenje visokog napona za uređaje koji se napajaju sa 230 V, 50 Hz naizmeničnog napona ( pogledati sliku konvertora napona za računar i svetlo ). Za takav konvertor treba kao izvor struje koristiti akumulator minimalnog kapaciteta od 45 Ah. Nedavni nestanak struje u gradu, koji je trajao preko sat vremena, naveo me na ideju kako da u takvoj situaciji imam sigurno rezervno napajanje LED niza koji je mali potrošač struje, svega 500 mA, što će sa minijaturnim akumulatorom kapaciteta od 1300 mAh obezbediti do dva časa spasa od neprijatnog mraka.

Uređaj koji predstavljam vredan je pažnje zbog malih dimenzija i manje snage sa namenski pravljenom kutijom u kombinaciji aluminijski lim, drvo i plastika, ali sa automatskim preklapanjem mreža-baterija i sa zaštitom od prepunjavanja i kratkog spoja akumulatora. Primarna vrednost ovog uređaja je automatsko prebacivanje na rezervno napajanje, što pri nestanku struje u mreži spašava od tumaranja po mraku. Može biti stalno uključen na mrežu, služeći kao večernje pozadinsko svetlo, pri čemu se baterija polako prazni, ali i kontinuirano dopunjava do maksimalnog projektovanog napona od 14,8 V sa strujom punjenja, Ipunj. = (Uizl. – Ubat.)/Rx. Pored minijaturnog akumulatora ( 12 V, 1300 mAh ) urađen je ispravljački stepen složenijeg tipa sa dva odvojena Grecova spoja, stabilizatorom napona i kontrolom struje punjenja zbog nekih složenih procesa upravljanja relejnim sklopom koji reaguje pri nestanku struje u mreži. Tada se automatski pali svetlo, odnosno kotva releja prebacuje se na rezervni izvor napajanja. Preko releja, koji ima dva radna položaja, obezbeđen je potreban napon od 12 V za stabilno svetlo LED štapa koji fantastično osvetljava prostor u kome se nalazimo. Uređaj nije strogo fiksiran na jednom mestu, možemo ga po potrebi prenositi iz prostorije u prostoriju, ili mu odrediti neku ustaljenu radnu poziciju gde najviše boravimo.

Pored ekonomičnosti, po pitanju utroška struje i malih gubitaka na Džulovoj toploti  ovakav uređaj dokazano je koristan za svako domaćinstvo, sa izvesnim prednostima u odnosu na fabričko rezervno napajanje. Primetio sam, ispitujući i pažljivo testirajući brojna praktična rešenja, da je kod većine fabričkih uređaja rešenje stabilnog rezervnog napajanja prateća boljka, ili namerno izveden tehnički nedostatak, nepravilno punjenje baterije koja brzo strada, a u slučaju kratih spojeva u njenim ćelijama dolazi do težih kvarova na elektronici napajanja. Sa strogo kontrolisanim naponom i prilagođenom strujom punjenja ( Ipunj. ) moj prvenac za rezervno napajanje služio je, sa NiCd akumulatorom od 7 Ah, punih deset godina.

Što se tiče troškova za gradnju ovog minijaturnog uređaja, najveća stavka je akumulator, dok se cena komponenti ispravljačkog stepena može ublažiti, ili potpuno izbeći nekim raspoloživim rezervama delova koje poseduje svaki napredniji konstruktor. Relej je minijaturnog tipa ( 12 V, 10 A na kotvi ) za automatsko preklapanje mreža-baterija. Ukoliko kupujemo odgovarajuću metalnu kutiju, njena cena nije zanemarljiva, tako da je najbolje da je sami pravimo, ili se snađemo na neki drugi način. Možemo koristiti odgovarajuću metalnu, ili plastičnu kutiju sa svim potrebnim merama zaštite od visokog napona. Veličina kutije zavisi od odabranog kapaciteta akumulatora od koga zavisi vreme rezervnog napajanja koje se može precizno izračunati pomoću formule: q = I*t, odnosno, t = q/I. Kapacitet akumulatora označen je na bateriji ( mAh, ili Ah ), tako da je dovoljno  instrumentom izmeriti jačinu struje potrošača ( LED niza ). Delenjem te dve fizičke veličine ( kapacitet akumulatora i jačinu struje ) dobijemo vreme u časovima. Na kraju recimo da nije preporučljivo potpuno pražnjenje akumulatora, što se  zbog ugrađene elektronske zaštite od potpunog pražnjenja i kratkog spoja Acu baterije nikako ne može desiti, što bi mu ubrzano smanjilo vek trajanja.

Korona virus je neminovno naterao mnoge da upražnjavaju slobodno vreme kako znaju i objektivno mogu. U posebnoj situaciji našli su se građani stariji od 65 godina kojima, pored zabrane izlaska, preti promena raspoloženja koje će itekako ostaviti neke trajnije posledice po zdravlje. Pravo je umeće svakog pojedinca da u takvoj situaciji ostane  normalan i da negativno raspoloženje ne prenosi na druge.

Pošto spadam u navedenu kategoriju građana, mada ne volim nikakve podele po starosnoj dobi, pokušao sam na najbolji mogući način da iskoristim moj hobi, a to je konstruktorska elektronika, da mi ne bude dosadno u zatvorenom prostoru. Pre svega, za vreme vanrednog stanja pružio sam maksimalnu stručnu pomoć nekim seoskim osnovnim školama u primeni OnLine nastave ( sedmični radni zadaci ) preko njihovih portala, a najveći deo slobodnog vremena posvetio sam elektronici i sređivanju moje radionice za konstruktorski rad.

Uređaj koji predstavljam napravljen je od zatečenog elektronskog otpada, plastične kutije (19,2x11,5x3,5 cm) od nekog HDD starije generacije, a unutar nje spakovao sam jednu pločicu od rashodovanog radio prijemnika (tjuner). Njegovo napajanje (9 V) obezbeđeno je sa dve litijum-jonske baterije napona po 3,8 V od rashodovanih mobilnih telefona. Baterije su vezane u seriju, tako da sam dobio potrebnih 7,6 V. Njihovo pravilno punjenje obezbedio sam pomoću jednog spoljašnjeg adaptera napona 9 V, 300 mA, s tim da sam na samom ulazu ugradio dobru filtraciju napona sa elektrolitičkim kondenzatorom kapaciteta 2.200 µF, 25 V. Sa prednje strane uređaja ugrađen je mikroprekidač, kako FM tjuner ne bi bio stalno uključen. Na sredini je stereo utičnica ( 3,5 mm ) izlaznog signala, a desno gore LED dioda sa dve boje, crvena kada se pune akumulatori i zelena kada se prazne. Ovde se radi o posebnoj LED diodi sa tri nožice, srednja ide na minus pol sa izvora struje na koju je redno vezan otpornik 1K radi smanjenja struje ( do 30 mA ) ka ovoj LED diodi. Druge dve nožice spojene su na dva različita mesta plus pol izvora, jedna odmah na ulazu, a druga posle zaštitne diode od pogrešnog polariteta i kratkog spoja, na tački napajanja FM modula ( tjunera ) ovog prijemnika male snage. Na izlazu se nalazi stereo signal vrhunskog kvaliteta koji se može isprobati na slušalicama, ili preko pojačala, ukoliko želimo jači signal zvuka. Na poleđini kutije nalazi se samo priključak za punjenje Li-ion akumulatora kapaciteta po 1.200 mAh. Unutar kutije smeštena je odgovarajuća štap antena koja se ne izvlači.

Ovakav FM prijemnik može se uspešno koristiti kao prenosni uređaj u prirodi i svugde u pokretu na mestima gde nemamo izvor struje. Zbog male potrošnje i većeg kapaciteta baterije uređaj je služio deset sati upotrebe bez dodatnog napajanja. Može poslužiti umesto mobilnog telefona za slušanje muzike sa neke radio-stanice na FM, ili na srednjotalasnom području, mada se taj opseg sve manje koristi. Upotreba srednjih talasa podseća na neke daleke godine kada se zbog pojave tzv. Fedinga čuju karakteristični šumovi, posebno u večernjim satima.

Mnogi će se opravdano zapitati, da li se ovo uopšte isplati pored laptopova, mobilnih telefona i kompjutera, kao i drugih savremenih uređaja za slušanje muzike. Utrošak za materijal je nula, ali rad i konstruktorsko stvaralaštvo zadiru u veoma precizne proračune i fine radnje povezivanja komponenti i primenu teorije u praksi. Kada se tome doda racionalno korišćenje slobodnog vremena, onda zadovoljstvu nema kraja, a korisna upotreba elektronskog otpada opravdava ovakvu gradnju koju mogu razumeti samo istinski ljubitelji elektronike.

Strana 1 od 8
PokloniIOtpadSkloni