27. Jan, 2022.

Sumirajući moje dugogodišnje konstruktorsko stvaralaštvo i radno iskustvo često se vratim proverenim šemama nekoliko pretvarača ( invertera ) napona 12 V (DC) na 230 V (AC), o kojima sam pisao na ovom portalu. Obično se radilo o uređajima male snage koji su bez startera napajali odgovarajuću neonku, a služe uglavnom za osvetlenje. Za njih se može čak upotrebiti neonka se izgorelim vlaknom, samo da nije oštećena. Zanimljivo je da gradnja takvih pretvarača, pojavom različitih i sve jeftinijih svetlećih dioda, više nije aktuelna. Pod ovim ne podrazumevam invertere koji će poslužiti za pumpe, TV, laptop i za još neke uređaje koji zahtevaju naizmenični napon vrednosti 230 V. Za takve uređaje se ne isplati konstrukcija, jer se mogu naći fabrički  uređaji po dosta povoljnim cenama.

Poredeći konstrukciju napajanja za dve različite vrste svetlosti, pomenutu neonku koja radi pomoću pretvarača i LED osvetlenje koje obično radi na 12 V jednosmernog napona, putem proverenog eksperimentisanja došao sam do saznanja da se više isplati LED svetlo iz više razloga. Možda najvažniji razlog je odsustvo mrežnog napona koji je opasan po život, makar se radilo o struji koja je dobijena preko pretvarača napona. U tom slučaju jedino nam je potreban dobar ispravljač sa stabilnim  naponom ( 12 V ) i jačinom struje preko 2 A, mada jedna LED-šipka dužine 60 cm troši svega 0,7 A struje što je prilično ekonomično. Ukoliko želimo savremeno trajnije rešenje, koje može poslužiti u slučaju nestanka električne struje, praktično je da u sistem napajanja ugradimo odgovarajući akumulator kapaciteta od 7 do 12 Ah koji će se stalno dopunjavati slabom strujom kontrolisanog napona ( 12,7 – 14,8 V ). Posebnim konstrukcijskim rešenjem uređaja ( vidi sliku ispod naslova ) omogućio sam da LED svetlo mogu koristiti u normalnoj situaciji, kada je prisutan mrežni napon, ali i u slučaju nestanka struje, što u gradu nije česta pojava. Ovakvo tehničko rešenje više odgovara seoskim uslovima života u zimskom periodu, kada su česti prekidi i kvarovi mrežnog napona, što zbog nevremena, oštećenja dalekovoda i elementarnih nepogoda.

Automatsko uključivanje u slučaju nestanka struje može se efikasno rešiti jednim relejnim prekidačem koji se napaja preko ispravljača iz mreže koji struju iz akumulatora usmerava preko aktivnog kontakta i time nam olakšava lakše snalaženje u mraku kada smo zatečeni zbog nedostupnog izvora svetlosti. Kod ovakvog praktičnog rešenja najveću pažnju treba posvetiti pravilnom punjenju akumulatora pošto je on stalno uključen na ispravljač koji ne dozvoljava njegovo prepunjavanje i oštećenje ćelija. U svakom slučaju, nije praktično koristiti velike olovne akumulatore, što zbog isparavanja, utoliko više zbog potrebe nabavke ispravljača nešto veće snage, što je skuplja varijanta. Akumulatori manjeg kapaciteta se mogu naći u pakovanju zatvorenog kućišta, bez potrebe dolivanja elektrolita i nekog posebnog održavanja, a njihovo pravilno ( dimenzionisano ) punjenje čini ih upotrebljivim od tri do pet godina. Svaki običan ispravljač može se preraditi na automatsko punjenje koje će produžiti vek trajanja Acu baterije.

Zaključimo da su sve prisutnije LED svetiljke, koje rade na 12 V jednosmernog napona preko ispravljača, ili baterije, ekonomičnije za osvetlenje zbog manje potrošnje struje, veće lične bezbednosti od mogućeg strujog udara, ali i posebnih rešenja rezervnog napajanja u slučaju nestanka struje u mreži. Mada to nije česta pojava, veliko je zadovoljstvo, kako laika, tako i konstruktora, kada se svetlo automatski pali i kada ne treba tražiti sveću, ili bateriju da bismo se snašli u mraku. Ovakvo rešenje se može upotrebiti za neke posebne uslove boravka u vikendici, kamp-prikolici, ili u prirodi, kada nam je potrebno svetlo manje snage. Potrošnja LED sijalica u nizu je veoma ekonomična i bolje rešenje od neonke.

 

Vek trajanja automobilskog akumulatora zavisi od njegove vrste (proizvođača), ali i od načina upotrebe u toku eksploatacije, tako da se za pojedine baterije daje garancija do dve godine uz precizno propisane uslove pravilnog korišćenja. Najveći broj problema sa automobilskim akumulatorom nastaje zbog neadekvatnog korišćenja, pa se nekim vlasnicima automobila dešava da akumulator menjaju jednom godišnje, dok kod drugih traje od pet do šest godina. Nepisano pravilo “što skuplje, to bolje” treba zameniti sa “kupite akumulator koji je adekvatan tipu vozila!”

Kod izbora prilikom zamene akumulatora mnogi se odlučuju za akumulator većeg kapaciteta (Ah) od propisanog, misleći da će tako rezerva snage biti veća, čime se opterećuje elektronika za kontrolu struje i napona punjenja. To je jednako loše kao kad je kupljen akumulator manjeg kapaciteta. Kapacitet akumulatora za automobil određuje se zavisno od alternatora i regulacije punjenja, tako da moramo poštovati propise o broju Ah i A, ali ujedno voditi računa o broju i snazi potrošača u automobilu.

Praksa potvrđuje da napon akumulatora od 10,5 V pokazuje duboku ispražnjenost, dok pun akumulator ima napon 12,72 V. Napon od 12,6 V znači da akumulator radi sa 85 % kapaciteta, na 12,4 V sa 65 % i na 12,25 V sa 40 % kapaciteta. Kod olovnih akumulatora obe elektrode se oblažu olovnim sulfatom PbSO4. Prilikom punjenja Acu baterije dolazi do složenih elektrohemijskih procesa sa elektrolitom (razređena sumporna kiselina), na negativnoj elektrodi olovni sulfat prelazi u olovni dioksid (PbO2), a na pozitivnoj elektrodi stvara se čisto olovo (Pb). Istovremeno, povećava se koncentracija sumporne kiseline (H2SO4). Pri pražnjenju odvija se suprotan proces sa naponom do 2 V na jednom paru ćelija.

Smatra se da je potrebno dopunjavanje akumulatora ukoliko mu je napon ispod 12,4 V, a kontrolu bi trebalo vršiti najmanje jednom mesečno. U normalnom radu akumulator postepeno gubi vodu iz elektrolita. Zbog toga je, pored kontrole napona, potrebno povremeno proveriti nivo elektrolita koji mora prekrivati ploče akumulatora do 10 mm iznad njih. U slučaju potrebe dosipanja tečnosti dodaje se samo destilovana voda  jer kiselina (H2SO4) ne isparava. Gubljenje vode smanjeno je kod akumulatora savremenije konstrukcije koji “ne zahtevaju održavanje”, no nakon dužeg vremena treba i takve akumulatore proveriti i dopuniti.

Poznato je da se tokom rada motora akumulator puni preko alternatora (13,9 V – 14,7 V) od čije ispravnosti zavisi koliko će akumulator služiti, tako da povremeno treba kontrolisati napon punjenja koji nikako ne bi trebao da prelazi 14,8 V. Dopunjavanje ispravnog akumulatora drugim izvorima jednosmernog napona (punjačima) nije potrebno, izuzev ako se akumulator ispraznio do kritične granice zbog nekog opterećenja (veliki broj potrošača, posebno velika snaga audio pojačala), ili zbog dužeg stajanja na niskim temperaturama, kada nismo u mogućnosti da startujemo motor. Važno je napomenuti da se akumulator priključuje (isključuje) na ispravljač dok on nije uključen u mrežni napon. Razlog je što se prilikom spajanja krokodil štipaljki obično javlja iskrenje, što može dovesti do eksplozije. Stalno dopunjavanje akumulatora spoljašnjim izvorom struje nije preporučljivo, pošto u normalnim uslovima akumulator punimo preko alternatora automobila koji će ga posle nekoliko minuta rada u “praznom hodu” osvežiti i omogućiti dalje nesmetano dopunjavanje prilikom vožnje.

Treba imati u vidu da kod većine savremenih automobila ima uređaja koji troše struju akumulatora i u stanju mirovanja (pogledati sliku).  Tako npr. stalno uključeni GPS vuče struju od 5 mA, alarm 10 mA, svaki podizač prozora po 5 mA, sistem za ubrizgavanje goriva 5 mA, digitalni sat 3 mA, analogni sat 7 mA, a radio sa kodom 3 mA. Sve se to dešava kada automobil ne radi, što znači da prekoračenje struje svih potrošača preko 50 mA dovodi do pražnjenja akumulatora. U tom slučaju ugrađuju se hibridni akumulatori bez održavanja i sa malim gubitkom vode (2 g po Ah).  Ukoliko je izvodljivo, neke od potrošača možemo isključiti posebnim prekidačima, ili relejima koji se aktiviraju posle startovanja motora. U ovako složene radnje se ne smemo upuštati bez stručne pomoći, ili posebne dogradnje uštede struje koju vrše ovlašćeni servisi. Ukoliko to nije izvodljivo potrebno je češće paliti automobil, ili vršiti dopunjavanje tako što ćemo za vreme punjenja obavezno skinuti kleme sa akumulatora jer napon preko 14,8 V može oštetiti elektroniku automobila, što se posebno odnosi na računar koji kontroliše rad automobila. Kod punjenja hibridnih, i drugih hermetički zatvorenih akumulatora, najbolje je koristiti automatske punjače koji ne dozvoljavaju njihovo prepunjavanje, odnosno isključuju punjenje kod dostignutog vršnog napona (14,8 V). Takvi punjači “prepoznaju” vrstu akumulatora i automatski podešavaju struju punjenja i gornji dozvoljeni napon. Punjenje preko navedene granice dovodi do oštećenja ćelija.

Prilikom startovanja motora, po pravilu, treba isključiti sve veće potrošače: farove, grejanje prednjeg i zadnjeg stakla, klimu, ventilatore, radio prijemnik sa pojačalom. Preterano opterećenje akumulatora prilikom startovanja mu šteti i skraćuje vek trajanja. Mnogi zaboravljaju da se prilikom pokretanja alnasera iz akumulatora povuče veoma jaka struja, jer se radi o elektropokretaču velike snage. Ako niste u blizini servisa proverite punjenje akumulatora u radu jednostavnim trikom. Uključite što više potrošača i duga svetla. Potom dodajte i oduzimajte “gas” i posmatrajte. Ako se intenzitet svetla drastično smanjuje i pojačava, pri povećanju broja obrtaja motora, morate da proverite alternator i punjenje, kao i akumulator.

Potrebno je znati kako sačuvati akumulator i produžiti mu radni vek: stalno držati preporučeni nivo elektrolita dosipajući, ako treba, samo destilovanu vodu, kleme akumulatora uvek držati čiste i pritegnute, kućište akumulatora i sam akumulator uvek držati čisto, nikada ne dozvoliti da se akumulator isprazni ispod 10,5 V, održavati i redovno proveravati električnu instalaciju vozila i voditi računa o ukupnoj snazi potrošača i o kapacitetu akumulatora. Kod hermetički zatvorenih akumulatora problemi se mogu registrovati prilikom punjenja, ili kod pražnjenja, ali je dovoljno da se napon kontroliše u radnom režimu i u režimu mirovanja koji treba da se kreće u navedenim granicama. Ovakve akumulatore treba dopuniti svaka tri do četiri meseca odgovarajućim punjačem, što znači da se i oni održavaju.

Na kraju recimo da stari, istrošeni akumulatori spadaju u opasan otpad, zbog olova, kiseline, polietilena i polipropilena - sastojaka plastičnog kućišta akumulatora. Zbog toga se akumulator bilo koje vrste i kapaciteta ne odlaže kao običan otpad. Kod nas postoje sertifikovane fabrike koje koriste za reciklažu i do 97 % akumulatora. Zato, ako nabavljate novi akumulator, najbolje je da stari odnesete u servis, ili prodavnicu. Mnogi proizvođači daju do 10 % popusta za kupovinu novog ukoliko ste odgovorno svoj stari akumulator predali na reciklažu.

 

Elektronski otpad, ubrzanim razvojem novih tehnologija, postaje sve veći problem, jer se još uvek ne može odlagati na propisan način. Pošto sam o  problemima odlaganja elektronskog otpada pisao ranije na ovom portalu, u ovom članku ću se pozabaviti temom kako ispravne delove pokvarenog UPS-a korisno upotrebiti za rekonstrukciju nekog drugog upotrebljivog uređaja za domaćinstvo.

Kod dugogodišnje upotrebe UPS uređaja najpre nastaju problemi sa akumulatorskom baterijom čiji je radni vek trajanja ograničen. Obično se radi o periodu do tri godine, što zavisi od vrste i kvaliteta baterije, ali i stanja elektronike koja je puni u toku eksploatacije. Kada primete da ni elektronici nema spasa, mnogi takav uređaj odbacuju kao otpad, ne razmišljajući da kod UPS-a gotovo nikada ne strada transformator i većina pasivnih, ali i aktivnih komponenti. Njih treba pažljivo skinuti i ispitati ispravnost, što se, inače, radi i kod odlaganja otpada kod registrovanih organizacija koje se na propisan način bave tim poslom.

Kutiju UPS uređaja, zajedno sa transformatorom, sam na najbolji način iskoristio za konstrukciju višenamenskog ispravljača sa regulacijom napona i jačine električne struje. U ovoj složenoj konstrukciji iskoristio sam dva odvojena izvoda sekundara transformatora, pošto jedan od njih daje 12 V, a drugi 18 V. Za oba izvoda, posle ispravljanja sa dva posebna Grec spoja, uradio sam preciznu elektroniku regulacije napona bez slabljenja jačine struje, ali sa dodatnom mogućnosti da se reguliše i jačina struje zbog specifičnih kriterija kod punjenja Ni-Cd akumulatora. Maksimalni ispravljeni jednosmerni naponi na dva odvojena izvoda iznose 17 V i 25 V. Prilikom korišćenja jačih struja može se desiti grejanje nekih komponenti, što je ublaženo dodavanjem kompjuterskog ventilatora (kulera) čija se brzina okretanja reguliše putem ugrađenog senzora na hladnjaku. Ova konstrukcija ima posebnu vrednost zbog elektronike za regulaciju napona, kao i rešenja da se sve komande i signalizacija izvedu na prednjem delu uređaja.

Pošto se radi o složenom multifunkcionalnom ispravljaču, da ne bismo stalno kontrolisali napone na izlazima, najbolje je ugraditi precizan digitalni voltmetar, koji se jednim preklopnikom može koristiti za oba izlaza. Jednostavnije praktično rešenje je da na prednjoj strani kutije označimo napone kod preklopnika i jačinu struje kod potenciometra ( pogledati sliku ispod naslova ). Sva elektronika smeštena je u plastičnu kutiju UPS-a u kome je na njegovom ranijem mestu ostao jedino transformator snage 500 W. Zadnji deo kutije iskorišćen je za prekidač naizmeničnog napona 230 V, 2 A, te za dva izlaza jednosmernog napona sa odgovarajućim presecima kablova koji su dimenzionisani prema merenim jačinama struje sa maksimalnim opterećenjem izabranog potrošača, ili prema kapacitetu akumulatora koji se nakon pražnjenja puni odgovarajućim naponom.

Na kraju se postavlja neminovno racionalno pitanje, šta smo dobili ovom konstrukcijom? Pre svega, pametno smo iskoristili elektronski otpad jer se sa minimalnim ulaganjem dobio višenamenski ispravljač i punjač akumulatora sa preciznom regulacijom napona i jačine struje. Dalje, možda najvažnije, proverili smo teoriju u praksi, Omov zakon i Kirhofova pravila za složena strujna kola i korisno upotrebili slobodno vreme, ukoliko ga imamo. Najveća nagrada za bilo kog konstruktora je praktična upotrebljivost uređaja u kabinetu, laboratoriji, ili u domaćinstvu. Ne treba zaboraviti ni uštedu novca, jer kvalitetniji fabrički ispravljači prilično koštaju i teže se opravljaju u slučaju kvarova, a ako se odlučimo za kupovinu polovnih uređaja, onda možemo imati veću štetu nego korist!

 

Pored olovnih akumulatora različitog napona i kapaciteta (Ah, mAh), danas koristimo punjive baterije manjeg pakovanja koje, zbog različite tehnologije izrade, nose tipične skraćenice u svojim nazivima, kao što su: Ni-Cd, Ni-MH i Li-ion. Nikl kadmijumska baterija (Ni-Cd) ima elektrode od nikla i kadmijuma, a kalijum hidroksid kao elektrolit. Nju sve više zamenjuje nikl-metalhidrid (Ni-MH) baterija koja ne podleže “memorijskom efektu”. Litijum jonska (Li-ion) baterija je najviše u upotrebi u laptop računarima i „pametnim“ mobilnim telefonima zbog povoljnog odnosa kapaciteta i mase. Ona ne dolazi u standardnim oblicima, već u specijalnim baterijskim paketima. Postoji još nekoliko tehnologija punjivih baterija, kao što su litijum-polimer (duplo većeg kapaciteta od Li-ion), cink-vazdušna (veoma lagana), cink-živin oksid (za slušne aparate), srebro-cink (avio industrija) i metal-hlorid (u električnim vozilima), mada se svake godine pojavljuju neka nova i kvalitetnija rešenja trajnosti i manjih dimenzija punjivih baterija. Njihovo punjenje ima posebne zahteve od kojih zavisi vek trajanja ovih baterija.

Kada se isprazne punjive baterije prenosnih uređaja moguće ih je napuniti ispravljačima, ili pomoću punjača. Kod nekih uređaja, kao što su laptopovi i „pametni“ telefoni, ne možemo efikasno koristiti bilo koji punjač zbog pojave “memorijskog efekta” i ugrađenog čipa baterije, tako da moramo voditi računa o oznaci (identifikaciji baterije: Id code, proizvod Vendor code). To znači da takve baterije moraju imati odgovarajući punjač koji nije običan i složene je konstrukcije. Standardni punjači za ostale tipove baterija veoma su jednostavni i uglavnom nisu transformatorskog, već „čoperskog“ tipa, ali daju struju stalne jačine, a na korisniku je da punjač isključi kada je baterija puna. U praksi proverena formula za izračunavanje vremena punjenja ovih baterija glasi:

Vreme punjenja baterije (u minutama) = [(kapacitet baterije/jačina struje punjenja)/0,8] * 60.  ( izvedeno iz formule: t = q/I , oznaka jedinica: s = C / A )

Formula je značajna, jer svako prepunjavanje oštećuje bateriju. Punjenje standardnim punjačima može potrajati desetinu sati, u zavisnosti od kapaciteta baterije. Noviji punjači su „inteligentni“ i opremljeni sa mikroprocesorom koji prati tok punjenja. Tehnikom kontrole delta-napona ovi punjači prekidaju punjenje u pravom trenutku. Takođe, oni su značajno brži jer bateriju pune jačom strujom koju stalno kontrolišu. Ako danas kupite punjač, najverovatnije je u pitanju „inteligentni“ punjač koji se može uz malo više truda i napraviti (pogledati slike). Napravljeni punjač je transformatorskog tipa i ima nekoliko varijanti izbora različitog napona punjenja. Osnovno je kod ovih punjača kontrola napona i jačine struje punjenja koja neće dovesti do stanja „prepunjavanja“, već će se automatski isključiti kada dostigne zadati napon punjenja. Punjenje Li-ion baterija može se vršiti preko najobičnijeg ispravljača nešto višeg napona od napona baterije jer sama baterija ima ugrađenu elektroniku koja ne dozvoljava prepunjavanje. Ovakve baterije veoma često susrećemo kod američkih bušilica čiji punjači rade na 110 V, 60 Hz. Pošto takvi punjači ne rade na 230 V, najbolje rešenje je da kupimo, ili pravimo odgovarajući punjač napona do 22 V, pošto baterija ima napon 18 V. Kod ovakvih bušilica baterija ima poseban mikroprocesor koji kontroliše napon i struju punjenja, ali i broj punjenja koji je ograničen obično do 1000, što ponekad predstavlja neprijatno iznenađenje. Zbog toga je prerada punjača za američke baterije uvek komplikovana, uglavnom rizična, jer elektronika sa mikročipom često pravi nerešive probleme (pogledati sliku otvorene baterije sa elektronikom).

Koji god punjač koristimo, grejanje baterije u toku punjenja je sasvim normalna pojava koja ne treba da brine. Ako se javljaju visoke temperature baterije, onda nije usklađen napon, ili jačina struje punjenja, što se u startu rešava merenjem i podešavanjem navedenih veličina (napona i jačine struje punjenja) sa propisanim vrednostima koje su naznačene na samoj bateriji. Jačina struje punjenja može se precizno računski odrediti dodavanjem otpornika (Rx) u serijsku vezu izvora čija se vrednost dobije pomoću formule: Rx = ( Ui – Ubat )/Ip. Dozvoljena jačina struje punjenja (Ip) obično je naznačena  na bateriji, što se odnosi i na napon (Ub), dok se napon izvora (Ui) i struja punjenja mere nekim preciznim analognim, ili digitalnim multimetrom. Posle podešavanja navedenih parametara i ugradnje Rx za određenu bateriju nije potrebno stalno merenje.

Drugi značajan pojam kod punjivih baterija je tzv. “memorijski efekat”. To je pojava da baterija gubi svoj kapacitet posle više ciklusa nepotpunog punjenja i pražnjenja. Tome su naročito podložne Ni-Cd baterije. Ako ovu bateriju više puta punite, pre nego što je ispraznite do kraja, doći će do pojave kristalizacije elektrolita. To predstavlja pojavu taloga koji smanjuje prostor u ćelijama baterije. Memorijski efekat je “izlečiv” tako što svaku ćeliju baterije treba isprazniti minimalnim opterećenjem (potrošačem) na 1,0 V po ćeliji, a zatim je potpuno napuniti. Ovaj proces se ponovi nekoliko puta dok se baterija ne vrati na njen originalni kapacitet. Zbog osetljivosti i rizika navedene radnje sa običnim punjačima najbolje je koristiti savremene punjače koji imaju opciju “osvežavanja” baterije. Ova priča odnosi se samo na baterije koje imaju više ćelija, recimo na baterije većine mobilnih telefona koje dolaze u sve kvalitetnijem izdanju.

Na kraju, osvrnimo se na životni vek punjivih baterija različitih tipova. Njihov životni vek meri se u ciklusima punjenja i pražnjenja. Kod Ni-Cd baterija on iznosi oko 1000 ciklusa, kod Ni-MH baterija 600 ciklusa, a kod Li-ion oko 800 ciklusa. Ako vam se čini da je to malo i vremenski kratko, zamislite da bateriju punite i praznite svaki dan (što obično nije slučaj), videćete da će baterija realno trajati dve do tri godine. Kada izračunate koliko nepunjivih baterija morate da kupite za isti vremenski period, biće vam odmah jasno koliko su punjive baterije ekonomski isplative. Neki od uređaja, kao što su telefoni, zbog oblika kućišta u koje se smešta baterija i vrste spojeva na njoj ne mogu koristiti obične baterije. Važno je istaći da od pravilnog punjenja baterije zavisi vek njenog trajanja, da bateriju nikada ne treba puniti do maksimuma, da je posle punjenja treba prazniti, ali nikako do nultog napona, niti se baterija treba stalno držati na punjaču zbog moguće kristalizacije elektrolita koja smanjuje njen kapacitet i radni vek. Ovo se posebno odnosi na baterije laptopova i baterije mobilnih telefona.

Izvor saznanja: www.2bike.rs

 

 

ISPRAVLJAČ VELIKE SNAGE

Među prvim smelim koracima bilo kog konstruktora je pravljenje ispravljača koji će, pored eksperimentisanja, poslužiti za punjenje odgovarajućeg akumulatora. Najjednostavnije rešenje je mrežni transformator sa izvodima naizmeničnog napona i Grecovim spojem odgovarajuće amperaže. Ova konstrukcija je toliko jeftina da se potpuno isplatila iz jednostavnog razloga što je transformator uzet iz pokvarenog UPS, tako da je jedino kupljen Grecov spoj jačine 35 A. Ako se pitate zašto tolika jačina struje greca, odgovor je, zbog upotrebe mrežnog transformatora snage od 500 W, što daje mogućnost da dobijamo ispravljač velike snage koji može poslužiti za različite namene.

Mnogima je poznata šema ovakvog jednostavnog ispravljača, ali je kod ove konstrukcije zanimljivo spajanje transformatora čiji primarni namotaj predstavlja deo koji je kod UPS bio sekundar. Kod njegovih izvoda, gde imamo četiri završetka, uzimamo dva kraja sa najvećim omskim otporom. U konkretnom slučaju radi se o belom i crnom izvodu. Na njih se dovodi mrežni napon od 230 V. Kada utvrdimo da nema grejanja transformatora pristupamo proveri dobijenog napona na sekundarnim izvodima kojih ima ukupno  šest. Sa izvodima sa naizmeničnim naponom od 12 V idemo debljim provodnicima na Grecov spoj koji nakon ispravljanja daje napon od 16,92 V. Ovaj napon je meren bez opterećenja izlaza ispravljača. Pri opterećenju, zavisno od snage potrošača, dolazi do pada napona koji kod ovako snažnog ispravljača nije posebno izražen. Navedeni naponi, nakon dvostranog ispravljanja, nisu kritični za punjenje akumulatora, čak većeg kapaciteta, čiji je napon 12 V. Jedina mana ovog punjača je da ga, zbog velike jačine struje punjenja akumulatora, ne bi trebalo dugo držati priključenog na njegove kleme. To može poslužiti za brzo punjenje olovnih akumulatora kada se akumulator ispraznio, dok nije preporučljiv za punjenje NiCd akumulatora. Vreme punjenja praznog akumulatora računamo prema formuli: t = q / I ( q-kapacitet Acu, I – jačina struje ).

Ovaj ispravljač može daleko više i bolje poslužiti za različite eksperimente, posebno na nekom radnom pultu kod izvođenja laboratorijskih vežbi iz nastave fizike, ili tehničko-informatičkog obrazovanja ( osmi razred ), kada nam je potrebno da imamo nekoliko nezavisnih paralelnih grana napajanja jednosmernim naponima koji nisu opasni po život učenika koji izvode eksperimente. Pored zaštite i izolacije spojeva sa naponima koji su opasni po život, preporučljivo je da se minus ( - ) pol izvora jednosmerne struje spoji sa žuto-zelenim provodnikom koji na napojnom kablu služi kao uzemljenje. Razlog su moguće parazitne struje koje se indukcijom stvaraju na limovima transformatora i drugih metalnih delova koje mogu da peckaju. Najbolje je da se ispravljač smesti u neku plastičnu, ili metalnu kutiju. Ukoliko je kutija metalna i nju spojiti na uzemljenje, a na prednjoj strani kutije ugraditi prekidač mrežnog napona, indikaciju rada i osigurač odgovarajuće vrednosti struje radi zaštite u slučaju kratkog spoja. Maksimalnu jačinu struje dobijamo računski iz formule za snagu transformatora: P = U * I , tako da, ako je snaga transformatora 500 W, a napon 16,92 V, onda je maksimalna jačina struje 29,55 A. Sada nam je potpuno jasno zašto je uzet Grecov spoj jačine struje od 35 A.

 

Ljubitelji hobi elektronike često kombinuju fabričke proizvode sa naprednom vlastitom konstrukcijom uređaja koji im služe u svakodnevnom životu. Ja se u takve zahtevne, po meni zanimljive gradnje i projekte “za dušu” obično upustim pred praznike zbog provere teorije u praksi, misaone relaksacije, ali i nastojanja da spojim ugodno sa korisnim uz minimalne troškove konstrukcije.

Uređaj koji sam nedavno završio ( pogledati sliku ) predstavlja stereo pojačalo snage 2x30 W koje može poslužiti za pojačanje izlaznog signala sa računara, ili nekog drugog stereo izvora zvuka. Fabrički ekvilajzer, koji sam u ispravnom stanju nabavio na „buvljaku“, ima četiri izlaza za zvučnike, čime se može dobiti savršen kvalitet i odgovarajuća jačina zvuka ukoliko kombinujemo reprodukciju na zvučnicima različitih frekvencijskih opsega. Konstrukciju odgovarajuće kutije sam najpre počeo od kostura koji je napravljen od četvrtastih aluminijskih šipki, a onda izradom prednje strane od aluminijskog lima i zadnje strane u kombinaciji lim sa delom ploče od lesonita. Ovo namerno ističem iz razloga što se često od materijala koje smatramo otpadom mogu praviti i kutije za neke uređaje. Imajući u vidu da je cena gotovih aluminijskih i plastičnih kutija relativno visoka, i ovo je jedan od načina uštede kućnog budžeta.

Pošto ekvilajzer nema mikrofonski priključak, takvu mogućnost sam iskoristio kombinovanjem kvalitetnog stereo predpojačala koje ima komande i za boju tona koja se na izlazu pojačala poboljšava, ili koriguje, na komandama ekvilajzera. Ugrađena su dva mikrofonska ulaza za dinamičke mikrofone zbog nekih praktičnih potreba i što boljeg kvaliteta zvuka. Dodata je mogućnost rezervnog ( alternativnog ) napajanja iz akumulatora napona 12 V.

Poseban deo samogradnje je napajanje ekvilajzera stabilnim naponom od 12 V sa jačinom struje do 5 A i napajanje mikrofonskog ( stereo ) predpojačala preko stabilizatora napona T812, koji ograničava struju na 1 A. Pošto predpojačalo nema veliku potrošnju struje, odabrani stabilizator napona pruža optimalne uslove da na izlazu predpojačala nema šumova, brujanja, niti neželjenih oscilacija. Tome značajno doprinosi upotreba oklopljenih mikrofonskih kablova koji su što kraći. Namerno je izbegnuta pasivna, ili aktivna mikseta, već je izbor ulaza omogućen preko višestepenog prekidača uz mogućnost da se na jednom od ulaza mogu kombinovati zajedno govor i muzika, što je rešeno preko navedenog predpojačala iz RK 3765 koji se može nabaviti i kitu kod “Kelco” d.o.o. Beograd.

Na kraju, mnogi se zapitaju da li se to isplati i da li je pametnije kupiti nov, ili polovan uređaj iste namene. Cena novih pojačala fabričke izrade nije mala, a “polovnjake” kupujemo na rizik, tako da se često desi da imaju kvarove, ili smetnje, koje se teško otklanjaju. Ono što je najvažnije, izgradnja ovakvih uređaja je zadovoljstvo za konstruktora, posebno ako ima vremena da eksperimentiše i proverava teoriju u praksi. Ako se to desi pred novogodišnje praznike, onda se radi o jedinstvenom doživljaju kreativnog stvaralaštva, estetike i umeća!

 

U elektronici danas imamo mogućnost velikog izbora poluprovodničkih elemenata, među kojima diode i tranzistori imaju još uvek zapaženo mesto u naprednoj konstrukciji, ili opravci različitih uređaja. Prilikom nedavne opravke jednog pretvarača 12V=/230 V~ prvo sam posumnjao u FET tranzistore koji su se nalazili na odgovarajućim Al hladnjacima. Merenje njihovih karakteristika na štampanoj pločici uređaja nije preporučljivo, jer nećemo moći bez specijalnih mernih instrumenata da saznamo da li su u kvaru, ili nisu. Pažljivo sam sve poskidao sa hladnjaka i odlemio FET-ove od štampane ploče, a onda nailazim na problem kako ispitati ispravnost FET tranzistora koji nisu kao obični NPN, ili PNP tipa, jer se radi o tranzistorima sa efektom polja ( Feld-Efect Tranzistor ).

FET tranzistori imaju svoje oznake po kojima ih prepoznajemo, a pakuju se u različitim kombinovanim metalnim i plastičnim kućištima. Pošto je njihova unutrašnja struktura dosta složena, zadržimo se samo na spoljašnjim izvodima, a to su tri nožice: sors-source ( S ), drejn ( D ) i upravljačka elektroda gejt-gate ( G ). Njihova podela vrši se prema sledećim kriterijima: sastav ( materijal kanala ), struktura, način delovanja i gradnja kanala. Prema tipu materijala postoje N kanalni i P kanalni tranzistori. Bliže karakteristike svakog od njih možemo pronaći na Internetu, ali je potrebno napomenuti da sa ovim tranzistorima moramo pažljivo rukovati pošto su osetljivi na pražnjenje statičkog elektriciteta koji se obično nalazi na vrhovima prstiju, ili na drugim delovima tela, čak i na pojedinim alatkama. Pražnjenje statičkog elektriciteta vršimo najjednostavnije dužim pranjem ruku, ili dodirom ( držanjem ) provodnika koji je vezan sa Zemljom.

Pošto sam posumnjao na ispravnost odspojenih FET-ova, tražio sam način kako da proverim njihovu ispravnost. Merenje “Unimerom” nije mi bilo pouzdano zbog nesigurnih spojeva na pipaljkama i blizine nožica. Onda sam našao jednu principijelnu šemu koju sam preradio tako da umesto obične sijalice imam LED diodu čiju sam anodu ( A ) vezao za plus ( + ) pol izvora struje, a katodu spojio sa drejn ( D ). Izvod “source” sam vezao za minus ( - ) pol izvora struje. Nožicu gejt - G sam vezao za srednji izvod tropolnog prekidača, koji se može spajati sa plus ( + ), ili minus ( - ) polom izvora struje. Odustao sam od napona vrednosti 12 V, tako što sam upotrebio polovnu Acu bateriju iz mobilnog telefona ( 3,6 V ) koja je minijaturna i može se smestiti u odgovarajuću plastičnu kutiju uz mogućnost punjenja, tako da je ovaj jednostavan tester ispravnosti FET-a prenosnog tipa sa sopstvenim napajanjem. Upravljačka elektroda reaguje i na ovako nizak napon, što je donekle bolje rešenje u odnosu na datu principijelnu šemu. Kako proveravamo ispravnost FET-a dato je u dole navedenom obrazloženju.

TesterIspravnostiMosfetTranzistora

Pored uspešne provere FET-tranzistora, ovakav jednostavan uređaj se može koristiti i za ispitivanje drugih tranzistora, čak i dioda, gde nam LED dioda pokazuje da li je komponenta ispravna, ili neispravna. Tako ćemo izbeći često složenu proceduru aktiviranja gejta preko pipaljki “Unimera”, što vršimo dovođenjem napona na taj izvod preko srednjeg izvoda tropolnog prekidača. Bolji poznavaoci poluprovodnika će se snaći sa različitim vrstama FET tranzistora. U mom slučaju se radilo o šest komada IRF 3205 5W, a sagrađeni tester mi je pomogao da izbegnem nagađanja o kvaru i nesmotrenu kupovinu navedenih tranzistora, tražeći kvarove na drugim mestima, pre svega kod elektrolita koji su zbog sušenja izgubili svoj kapacitet, a neki su bili u kratkom spoju. Dalje kvarove je sprečio osigurač koji se nalazi na odgovarajućem kritičnom mestu uređaja. Pri tome se držimo “zlatnog pravila” za elektroničare, da prvo saniramo sve uočene kvarove, pa tek onda stavljamo novi osigurač na kutiji uređaja. Podsetimo da je osigurač namerno oslabljeno mesto u jednostavnom, ili složenom strujnom kolu.

 

O nekoj čudnoj koincidenciji mog rođendana sa datumom rođenja Nikole Tesle ( 10. juli 1856. godine ) pisao sam na ovom portalu 9. januara 2013. godine u namenskom članku o nenadmašnom geniju. Nemam nameru da bilo čime oponašam Nikolu Teslu, ali ću otkriti tajnu da su me tim slavnim nadimkom pre nekoliko godina zvale poštovane kolege iz Novog Sada na republičkim takmičenjima i smotrama mladih talenata, gde sam sa mojim učenicima osvojio pet zlatnih medalja. Pošto se bliži moj rođendan, sladokuscima elektronike, a posebno mojim bivšim učenicima koji su još uvek „zaraženi“ tehnikom, nudim možda meni najdraži konstruktorski rad u mojoj praksi „koji je još u životu“ i u povremenoj upotrebi.

Rad predstavlja skladnu kombinaciju trokanalne miksete ( RK 3782 ), ekvilajzera i tranzistorskog stereo predpojačavača ( RK 3772 ). Mikseta je popularan naziv pojačavača namenjenog mešanju više tonskih signala. Ona ima više ulaza i samo jedan izlaz. Na miksetu možemo priključiti gitaru, orgulje, mikrofon, radio, magnetofon, DVD ili CD plejer, laptop, kao i telefonsku liniju. Kod ovog uređaja jedan ulaz služi za mikrofon, a druga dva za nezavisne izvore stereo zvuka, a sve se nakon miksovanja završava u jednom izlazu koji ide na stereo pojačalo veće snage.

Napajanje uređaja je pomoću malog mrežnog transformatora ( 230 V/15 V ), Grecovog spoja i dobro stabilisanog i filtriranog napona koji obezbeđuje potpuno bešuman rad mikrofonskog predpojačala, miksete i ekvilajzera za regulaciju boje tona. Mikseta je, kako je već navedeno, trokanalna, što podrazumeva kvalitetno mešanje tri ulazna signala preko tri logaritamska potenciometra P1, P2 i P3 za regulaciju jačine ulaza. Signali se preko klizača potenciometara ( pogledati šemu ) i preko zaštitnih otpornika R2, R3 i R4, vode preko elektrolitičkih kondenzatora na bazu pojačavačkog tranzistora tipa BC550. Ovaj tranzistor predstavlja specijalnu malošumnu verziju univerzalnog NPN tranzistora BC546. Baza tranzistora dobija polarizaciju preko otpornika R6 čime se istovremeno vrši i stabilizacija radne tačke. Pojačani signal sa kolektora tranzistora vodimo na izlaz preko elektrolitičkog kondenzatora C3. Komponenta R5 je radni otpornik kolektora, a napon istog se posebno filtrira otpornikom R1 i elektrolitičkim kondenzatorom C1.

Drugi podsklop je ekvilajzer za boju tona, koji se može izbeći, ali je dobar zbog regulacije visokih i niskih tonova, a posebno je značajan prilikom upotrebe mikrofona. Treći elektronski podsklop predstavlja minijaturno tranzistorsko stereo predpojačalo ( RK 3772 ) dvostepenog tipa sa dva puta po dva NPN tranzistora tipa BC550. Ulazna osetljivost predpojačavača je 1 mV kod ulazne impedanse od 10 KΩ. Maksimalan signal na ulazu je 20 mV. Pojačavač je linearan u pomenutom odnosu ulaznog signala. Njegovo maksimalno pojačanje je oko 100 puta sa maksimalnim izlaznim naponom 2,5 V. Napaja se stabilnim i dobro filtriranim naponom vrednosti 14,8 V. Ovakav predpojačavač može se upotrebiti u razne svrhe, za mikrofon, MP3, DVD, ili CD plejer. Kod gradnje posebno treba voditi računa da kablovi budu što kraći i oklopljeni, kao i o položaju transformatora, što se utvrđuje eksperimentalno.

Na kraju se obično zapitamo koja korist, ili bacanje novca kod ovog uređaja kada možemo za male pare kupiti fabričku miksetu sa više kanala i ulaza? Minijaturna kutija i konstrukcija ovog uređaja ( 21,5x16x4,5 cm ) predstavljaju pravo zadovoljstvo i izazov za svakog ozbiljnijeg konstruktora. Uređaj ima i rezervno  akumulatorsko napajanje, što u kombinaciji prenosnog pojačala sa rezervnim napajanjem, o kome sam ranije pisao, daje rešenja za kvalitetan zvuk i upotrebu mikrofona i tamo gde nema mrežnog napona. Ovakvo rešenje me spašavalo u interesantnim situacijama nestanka struje ( kada je trebalo ozvučenje ), ali pod jednim uslovom, da uvek imamo pun akumulator nešto većeg kapaciteta ( 45 Ah ) .

 

Izvor saznanja:
„Mala škola elektronike“, Vladimir D. Krstić i Željko V. Krstić, III dopunjeno i prošireno izdanje, Beograd 2002. godine ( komponente RK 3772 i RK 3782 ).

Pošto je kod većine uređaja, bilo gotovih, a posebno onih sa kojima eksperimentišemo, potrebno kvalitetno napajanje, moje konstruktorsko i lično zadovoljstvo je traganje za najboljim rešenjima u praksi. U prošlom članku pisao sam o ispravljaču koji na sekundaru ima dva namotaja po 15 V, ali je za neke eksperimente manjkavo što ne daje struju preko 1,2 A. U ovom članku sam se posvetio izradi ispravljača koji na sekundaru daje naizmenične napone od 6 V, 12 V i 18 V ( max. 5 A ), čiji izbor vršimo grebenastim preklopnikom sa više ( 6 ) položaja.

Konstruktorsko rešenje ispravljača vrlo je jednostavno ako imamo, ili smo napravili ( „motali“ ) transformator sa navedenim izvodima sekundara. Od ostalih vitalnih delova ispravljača potrebni su: prekidač mrežnog napona, grebenasti preklopnik, Grecov spoj ( 4 ispravljačke diode ), elektrolitički kondenzator većeg kapaciteta ( minimalni radni napon 50 V ), tri led-diode za signalizaciju izabranog napona, provodnici različitih debljina i odgovarajuća kutija. Ako je metalna, onda je dobro da je uzemljimo, radi sigurnosti od proboja mrežnog napona i zbog odvođenja parazitnih vrtložnih struja. Za ovaj ispravljač sam odabrao grebenasti preklopnik koji, pored izbora odgovarajućeg napona, daje mogućnost da sa tri led-diode različitih boja ( preporučuju se: žuta, zelena i crvena ) imamo uvid  koji je napon na izlazu, tako da je najbolje da žuta LED signalizira 6 V, zelena 12 V i  crvena 18 V. Od šest položaja prva tri su za jače, a preostali ( 4, 5 i 6 ) za slabije struje na izlazu ispravljača, što omogućava punjenje i NiCd akumulatorskih baterija različitih napona. Dvostrano ispravljanje Grecovog spoja sa dobrom filtracijom napona pomoću elektrolita i induktiviteta – feritnog jezgra sa namotajem daje nešto veće vrednosti  jednosmernog napona od naznačenih ( množimo sa √2, približno  1,41 ) koje se mogu korigovati i dovesti do optimalnih granica za upotrebu.

Sa ovakvim izborom sekundarnog napona, koji nakon ispravljanja nema ugrađenu stabilizaciju sa Cener diodama i tranzistorima, moguće je puniti olovne akumulatore od 6 V i 12 V, dok nije preporučljivo za NiCd akumulatore zbog strožijih zahteva jačine struje za njihovo punjenje. Ovaj nedostatak efikasno je otklonjen dodavanjem  odgovarajućeg otpornika ( Rx ) kojim regulišemo jačinu struje punjenja, a njegova omska vrednost se izračunava po poznatoj formuli iz Omovog zakona: Rx = ( Ui – Ubat )/ Ip, ukoliko je stabilan napon mreže ( 230 V ).  Akumulatori NiCd tipa će se jačim strujama daleko brže puniti, ali predozirana jačina struje punjenja im skraćuje vek trajanja. Zato je najbolje da se takvi akumulatori pune strujom koja je na njima naznačena ( napon i jačina struje punjenja ).

Ovakav ispravljač je dobar za različite eksperimente, posebno u nastavi fizike i TiO kod izvođenja laboratorijskih vežbi, gde učenici mogu birati različite vrednosti napona sa dovoljnim jačinama struje. Time će izbeći upotrebu serijske veze baterija Leklanšeovog tipa i dobiti široke mogućnosti da eksperimentišu sa naizmeničnom i sa jednosmernom strujom. Moje dugogodišnje radno, predavačko i takmičarsko iskustvo u nastavi fizike je potvrdilo da je izvođenje propisanih laboratorijskih vežbi ( koje se često zaobiđu, ili zbog neopremljenosti kabineta izbegavaju ) od velikog značaja da učenici na vreme shvate sve tajne, a posebno zakone električne struje. Zbog toga je najbolje ovakav ispravljač, ili više njih, ugraditi u radne stolove kabineta fizike, ili u neki radni pult nastavnika odakle bi se mogao organizovano pratiti grupni rad na izvođenju vežbi. Rešenja zavise od kreativnosti nastavnika, tako da lično smatram da nastava fizike nije samo rešavanje složenih zadataka kojima se učenici sve više opterećuju, već i praktičan rad koga je sve manje u školskim kabinetima. Traženje balansa u primeni teorije i prakse zavisi od neposrednih izvršilaca nastavnog procesa, njihove volje, kreativnosti i stručnosti.

Pre nepunu godinu dana ( 20.05.2016. ) pisao sam na ovom portalu o gradnji automatskog punjača akumulatora koji se u praksi pokazao veoma korisnim uređajem, ali napredniji konstruktori često imaju potrebu da prilikom eksperimentisanja imaju različite izvore stabilnog napona. Pošto su za takve potrebe dovoljne struje male jačine, pristupio sam konstrukciji jednog minijaturnog ispravljača sa regulacijom napona od 2 – 32 V, 1,2 A. Pre navedene gradnje ispravljača isprobao sam i konstrukciju uređaja sa slike 11. koja je manje zahtevna, ali daje optimalne mogućnosti izbora željenog napona ( 0 V do 15 V ).

Konstrukcija sa slike 12. omogućava kontinualnu promenu izlaznog napona u granicama od 2 V do 32 V uz maksimalnu struju 1,2 A. Ceo opseg regulacije podeljen je u dva područja koja se biraju dvostrukim preklopnikom P1 - P2. U prvom položaju napon sekundara iznosi 15 V, što omogućava regulaciju izlaznog napona u granicama od 2 V do 14 V. Kao referentni elemenat koristi se Cener dioda BZ-1, koja se, za razliku od ostalih Cener dioda, polariše u direktnom smeru ( anoda na plus, a katoda na minus ). U drugom području napon na sekundaru iznosi 30 V, a izlazni napon se menja u granicama od 13 V do 32 V. Ulogu diode BZ-1 preuzima Cener dioda BZ-12.

Podelom celog opsega regulacije na dva područja, onemogućili smo pojavu velikog inverznog napona između kolektora i emitera tranzistora T-3. Regulacija izlaznog napona vrši se potencometrom P. U rednoj grani upotrebljen je Darlington spoj dva snažna tranzistora 2N3055. Napominjemo da se umesto tranzistora T-2 može upotrebiti i manje snažan tranzistor ( 2N3053, 2N1711, BC219 itd. ), tako da uređaj postaje ekonomičniji. Tranzistori T-2 i T-3 monirani su namerno na aluminijskom hladnjaku nešto manje površine, ali je zato zbog izbora kutije ( metalna kutija kompjuterskog napajanja ), dodat jedan ventilator ( 12 V ) za efikasno hlađenje tranzistora.

Kutija je uzemljena sa maksimalnim korišćenjem raspoloživog prostora u njoj, što traži veliku preciznost i dobar proračun gradnje. Uređaj ne zahteva velika ulaganja, a daje širok spektar regulacije napona sa ograničenom jačinom struje do 1,2 A. Može poslužiti, kako za eksperimentisanje, tako i za punjenje osetljivih NiCd akumulatora, pri čemu se mora voditi računa o dozvoljenom naponu i jačini struje punjenja, što je označeno na samom akumulatoru.

Izvor saznanja: „Radio-amater“ - broj 2, februar 1974. godine

PokloniIOtpadSkloni